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The FASTMath project brings leading edge computational 
mathematics technologies to the SciDAC Program

Develop advanced numerical 
techniques for DOE applications
• Eight focused topical areas based on 

application needs
• High level synergistic techniques

Deploy high-performance software 
on DOE supercomputers
• Algorithmic and implementation scalability
• Performance Portability
• Interoperability of libraries

Demonstrate basic research 
technologies from applied 
mathematics
• Build from existing connections with basic 

research
• Focus on research results that are most likely 

to meet application needs

Engage and support of the 
computational science community
• Publications and presentations in highly visible 

venues
• Team tutorials
• Workforce pipeline and training
• Web presence

FASTMath Objective: 
Reduce the barriers 
facing application 

scientists
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The SciDAC-4 FASTMath Institute leverages and builds on 
the successes of SciDAC-3 to meet application needs

3 +

+ Numerical Optimization 
+ Data Analytics =
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Our team comprises over 
50 researchers from 5 

national laboratories and 
5 universities
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FASTMath brings together an exceptional team of 
researchers and software library capabilities

Our software has 100s of 
person years of 

development behind it

mfem
PETSc

zoltan

SuperLU

AMReX
PEXSI

For more information contact: Lori Diachin, LLNL
diachin2@llnl.gov
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The FASTMath team has a proven record of advancing 
application simulation codes

Next Generation 
Application Codes

• Created unique DOE 
capabilities in ice sheet 
modeling

• First ever, self consistent 
solution of continuum 
gyrokinetic system in edge 
plasmas

• Unprecedented resolution 
for Nyx cosmology code

Faster Time to 
Solution

• New eigensolvers 2X faster 
for quantum chemistry 
software

• Parallel PEXSI software 
enabled electronic structure 
calculations with 10,000 
atoms (compared to 1000's)

• Accelerated nonlinear solver 
enabled largest dislocation 
dynamics  simulation with 
ParaDiS

More Robust 
Simulations

• Dramatically decreased time 
to generate meshes for 
fusion tokamak codes

• Adaptive mesh refinement 
and discretizations to resolve 
ELM disruptions in tokamaks

• Order of magnitude 
improvement in accuracy of 
integral calculations in 
material chemistry

For more information contact: Lori Diachin, LLNL
diachin2@llnl.gov



FASTMath is actively engaged with 19 SciDAC-4 application 
partnerships
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BER (5)

• Structured grid AMR
• Unstructured grid AMR
• Time integration
• Linear/Nonlinear 

solvers, 
Preconditioners

• Optimization
• Verification / UQ

FES (5)

• Unstructured meshes
• Discretization 

technologies
• Iterative Linear solvers
• UQ

HEP (3)

• Direct solvers
• Structured Grid AMR
• Optimization
• Sensitivity Analysis
• Inference and machine 

learning

NP (2)

• Structured grid AMR
• Eigenvalue problems
• Inference and Machine 

Learning

BES (2)

• Nonlinear and tensor 
eigenvalue problems

• Linear solvers and 
Preconditioners

NE (1)

• UQ



Math-CS collaborations led to significant advances in 
SciDAC-3 application sciences
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Increased 
accuracy of MPAS 
Ocean modeling 
system through 

improved scaling 
and improved 
partitioning 
algorithms

Development of 
highly-scalable, 

many core-aware 
multigrid solver 
increased ability 

of cosmologies to 
simulated 

evolution and fate 
of the universe 

(HPGMG in 
BoxLib)

New nonlinear 
solver and 

evaluation of 
OpenMP 

performance 
enabled largest 

dislocation 
dynamics 

simulation using 
ParaDiS

Improved 
efficiency of 
eigensystem 

solution reduced 
time to solution 

in large, sparse ab 
initio calculations 

in nuclear 
structure



• Performance improvements to math library software
– Improved scaling (identify performance bottlenecks, find ‘performance 

bugs’, eliminate unnecessary communication)
– Improved on-node performance (programming models, memory)

• Using performance models to improve foundational understanding of 
algorithms

• Advanced visualization tools for FASTMath tools (e.g., AMR)
• In situ visualization tools used in unstructured mesh simulation 

workflow
• Use of CS abstractions to improve or accelerate application 

development
– Domain Specific Language compilers/tools 
– Leverage abstractions developed by RAPIDS for I/O to unify application 

experience
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FASTMath and RAPIDS will actively collaborate to continue to 
improve math libraries and application experience
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FASTMath is focused on eight core technology areas

Structured 
Mesh Spatial 
Discretization Unstructured 

Mesh Spatial 
Discretization

Time 
Integrators

Solution of 
Linear 

SystemsSolution of 
Eigenvalue 
Problems

Uncertainty 
Quantification 

Data Analytics

Synergistic  
activities link 

the eight 
areas together
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Eight core technology areas: Structured Mesh
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For more information contact: Ann Almgren (LBNL), asalmgren@lbl.gov



FASTMath supports several structured mesh frameworks with 
a wide range of capabilities.   Features include support for

▪ Adaptive Mesh Refinement (AMR)
▪ Higher-order interior spatial discretizations
▪ Higher-order time-stepping
▪ Higher-order tools for interface dynamics
▪ Particle dynamics and particle-mesh operations
▪ Mapped multi-block domains
▪ Dynamic load balancing
▪ Interoperability with other solvers, e.g. those in SUNDIALS, PETSc, 

hypre

FASTMath Structured Mesh Activities



▪ FASTMath structured grid capabilities are used in numerous DOE 
projects:

▪ SciDAC-4:
• ComPASS (PIC with AMR)
• TEAMS (astrophysics)
• ProSPect (BISICLES ice sheet model)

▪ HPC4Mfg
• 3D printing 
• industrial spray painting
• combustion with electric fields

▪ ECP – accelerator modeling, astrophysics, combustion,
▪ cosmology, multiphase flow, subsurface

Structured Mesh Application Areas
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Eight core technology areas: Unstructured Meshes
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For more information contact: Mark Shephard (RPI), shephard@rpi.edu



FASTMath is providing application developers with tools 
and methods so they can take direct advantage of the 
advantages of unstructured mesh technologies.
▪ Unstructured Mesh Analysis Codes
▪ Unstructured Mesh Adaptation
▪ Performant Unstructured Meshes
▪ Dynamic Load Balancing and Task 

Mapping for Extreme Scale Applications
▪ Unstructured meshes for: 
• PIC methods
• Management of UQ processes
• In situ visualization and data analytic

FASTMath Unstructured Mesh Development Areas



▪ Analysis of RF waves in 

tomamak fusion reactors

• MFEM high-order finite elements

• PUMI geometry and mesh control

▪ Atmospheric Modeling

• Zoltan2’s task placement to reduce 

communications in HOMME’s simulations

▪ Modeling ice sheet melting

• Core simulation in for sea level predictions

• FELIX analysis code

• Omega_h mesh adaptation

▪ Unstructured mesh methods for 4

fusion SciDACS

Subset of Current Unstructured Mesh Application Areas
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Eight core technology areas: Time Integrators
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For more information contact: Carol Woodward (LLNL), cswoodward@llnl.gov



FASTMath supports:
• Multistep and multistage adaptive time stepping software for ordinary 

differential equations and differential algebraic equations
• Spectral deferred correction methods and software that include 

iterative and parallel methods for the time domain
• Adjoint integration methods and software (for discrete and continuous 

adjoints) for application to optimization contexts

Planned activities:
• Multirate methods in SUNDIALS
• Parallel-in-time methods in SUNDIALS
• High order SDC methods in AMReX
• Multilevel and implicit/explicit SDC methods in AMReX
• Second-order discrete adjoint capabilities in PETSc

FASTMath activities support several time integration 
methodologies and software



Software

• SUNDIALS (https://computation.llnl.gov/projects/sundials)

• PETSc (www.mcs.anl.gov/petsc)

• SDC in AMReX (amrex-codes.github.io)

• Libpfasst (pfasst.lbl.gov)

Personnel:
• LLNL: Woodward, Gardner, Loffeld
• LBNL: Minion
• ANL: Zhang, Smith
• SMU: Reynolds

FASTMath time integration methods are delivered through 
software and personnel expertise

https://computation.llnl.gov/projects/sundials
http://www.mcs.anl.gov/petsc


DOE applications targeted:

• Climate 

– atmospheric dynamics and physics

– ice sheets

• Combustion

• Power grid

• Cosmology

• Subsurface flow

• Additive manufacturing

FASTMath activities target innovation in methods and 
software that will impact applications
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Eight core technology areas: Linear Systems
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For more information contact: Ulrike Yang (LLNL), yang11@llnl.gov



• FASTMath provides a variety of linear solvers to address 
different needs of DOE applications,
such as climate, astrophysics, nuclear physics, 
fusion, subsurface flow, additive manufacturing, 
power grid 

• Tokamak Transient Simulations 

• Land ice simulations

• Simulation of Energetic 
Particles in Burning Plasmas

FASTMath Linear Solvers Impact Many Applications

Electro-
magnetics

ITER Tokamak Magneto-
hydrodynamics

Magnetic flux compression 
generator simulation enabled 

by MG smoother research



• SuperLU – LU factorizations
• symPACK – symmetric positive 

definite matrices
• STRUMPACK – hierarchical 

basis preconditioners
• PDSLin – parallel domain decomposition Schur 

complement based linear solver
• Local discrete convolution methods (LDCMs) for 

constant coefficient PDEs
• ShyLU (Trilinos) - domain decomposition and node 

level solvers, including BDDC and GDSW 
preconditioners, Multithreaded LU, 
Cholesky, and triangular solvers

FASTMath Linear Solvers Software
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UsymPACK
symPACK: a solver for sparse Symmetric Matrices

Mathias Jacquelin, Esmond Ng, and Katherine Yelick
Scalable Solvers Group, Lawrence Berkeley National Laboratory, Berkeley, California, USA

Yili Zheng
Google, California, USA

Abstract

We present a parallel distributed-memory sparse symmetric solver, symPACK, based on
an asynchronous task paradigm using one-sided communication and dynamic scheduling
for computing the Cholesky factorization.
The performance and resource usage of sparse matrix factorizations are critical to
time-to-solution and maximum problem size solvable on a given platform. Exploiting
symmetry in sparse matrices reduces both the amount of work and storage cost required
for factorization. On large-scale distributed memory platforms, communication cost is
critical to performance.
symPACK relies on e�cient and flexible communication primitives provided by the
UPC++ library. Experiments shows good scalability and that symPACK often outper-
forms state-of-the-art parallel distributed memory factorization packages.

Right-looking Sparse Cholesky factorization

I Fill-in-reducing ordering
I Multiple Minimum Degree,

Approximate Minimum Degree
I Nested-dissection ( (PAR)Metis and

(PT)Scotch graph partitioners )
I Symmetric permutation

I Supernodal elimination tree
I A Supernode is a set of columns

with a dense diagonal block and
same o↵-diagonal non-zero row
structure

I The Elimination tree describes
dependencies between supernodes.

I At every node in the elim. tree
I Supernode factored locally
I Updates some ancestors in the tree

I Linear solve phase
I Forward and backward solve:

bottom-up and top-down tree
traversals

Processor list:
p0 p1 p2 p3
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(a) Structure of factor L
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1 3

(b) Supernodal elim. tree

Figure 1: Sparse matrix A supernode partition, i denotes
the i -th supernode. represents original nonzero elements
in A, while + denotes fill-in entries. Colors correspond to
the 4 distributed memory nodes on which supernodes are
mapped in a 1D-cyclic way.

Fan-in, Fan-out and Fan-both factorization algorithms

I Three families of parallel Cholesky
algorithms [1]:
fan-in: Updates from a column k to other

columns i computed on the processor
owning column k .
Processor owning i will have to
“fan-in” (or collect) updates from
previous columns.

fan-out: Updates from k computed on
processors owning columns i .
Processor owning k has to “fan-out”
(or broadcast) column k of the factor.

fan-both: Updates are allowed to be
performed on any processors. Relies
on computation maps.
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Figure 2: fan-both task dependencies for three
columns j , i and h

I Three types of tasks:
I Factorization F

i ,i : compute column i

of the Cholesky factor.
I Update U

i ,j : compute the update
from `

j :n,i to column j , with i < j

such that `
j ,i 6= 0, and put it to an

aggregate vector t

i

j

.
I Aggregation A

j ,j : apply all aggregate
vectors ti

j

from columns i < j , with
`
j ,i 6= 0, to column j .

symPACK – symmetric matrix PACKage

Solver for Sparse Symmetric Linear Systems – http://www.sympack.org/

I Sparse direct linear solver for symmetric positive definite matrices
I Aimed at matrices from PDE discretizations, shift-invert Lanczos, . . .
I Sparse symmetric data storage: lower storage cost

I Real, complex, single & double precision and 32/64-bit indexing (C++ templates)

I Scalable distributed memory UPC++ code, no multi-threading curently available

Data layout and computation mapping

I 1D cyclic Supernodal layout, sequential BLAS is called within each supernode
I Supernodes assigned to nodes based on estimated work (proportional mapping)
I Computation map determines node ranks where tasks are mapped/executed:

0

0

0

0

0

0

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

0

0

0

0

0

0

1

1

1

1

1

1

(a) Fan-in

Mi ,j = mod(i ,P)

0

1

2

3

0

1

0

1

2

3

0

1

0

1

2

3

0

1

0

1

2

3

0

1

0

1

2

3

0

1

0

1

2

3

0

1

(b) Fan-out

Mi ,j = mod(j ,P)

0

1

0

1

0

1

0

1

0

1

0

1

2

3

2

3

2

3

2

3

2

3

2

3

0

1

0

1

0

1

0

1

0

1

0

1

(c) Fan-both

Mi ,j =
mod(min(i , j),

p
P)+p

Pbmod(max(i , j),P)/
p
Pc

Asynchronous Task Execution
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I Dynamic task scheduling within
distributed memory node:
I local task queue (LTQ), contains all

local tasks awaiting execution,
I ready task queue (RTQ), contains all

local tasks ready for execution.

I One sided “pull” communication
protocol using UPC++:
I 1 Sender notifies available data

(sends global pointer)
I 2 , 3 & 4 Recipients periodically

gets incoming data
I 5 One-sided communications without

interrupting sender/recipient
I Remote temporary data deallocation
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Figure 3: Data exchange protocol in symPACK.

Numerical Results on NERSC Edison, 2x 12-core processors per node
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Figure 4: Impact of comm. strategy and scheduling

I Push: two-sided MPI communications +
deadlock avoiding strategy

I Pull : one-sided UPC++ communications
I Pull + dynamic scheduling : UPC++ and

dynamic task scheduling within a node

I Pull protocol has low overhead
I Ordering computation and comm. to

avoid deadlocks constrains the schedule
I Dynamic scheduling improves

performance

I Optimizations and scheduling strategy for
distributed memory nodes

I Every solver is run in “Flat-MPI” mode
I SuperLU DIST timings given for scalability

trend
I PASTIX and MUMPS are two symmetric solvers
I symPACK outperforms state-of-the-art 1 4
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Figure 5: Strong scaling on Flan 1565
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Figure 6: Strong scaling on audikw 1

I Hybrid approach useful to reduce
communication costs:
I MPI / OpenMP
I UPC++ / OpenMP
I UPC++ / UPC++

I PASTIX uses 24 threads per node
I Multi-threading helps PASTIX a lot
I symPACK has no hybrid implementation

yet but coming soon

Partner frameworks and applications

I Now integrated in the PEXSI library, available in the ELectronic Structure
Infrastructure (ELSI) and used in several applications: DGDFT, SIESTA, CP2K.
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• KokkosKernels: 
basic linear algebra kernels

• Highly scalable multigrid solvers and 
preconditioners with different flavors
– Hypre: structured and unstructured 

multigrid solvers, conceptual interfaces
– MueLU (Trilinos): smoothed 

aggregation multigrid solvers
– GAMG (PETSc): geometric, algebraic,

hybrid options
• Krylov solvers (PETSc, hypre, …)

FASTMath Linear Solvers Software
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Eight core technology areas: Eigenvalue Problems
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FASTMath supports numerical solutions of large-scale eigenvalue problems of 
a variety types. 

• Hermitian eigenvalue problems
• Non-Hermitian eigenvalue problems
• Nonlinear eigenvalue problems with eigenvector nonlinearity

! " " = "Λ
• Nonlinear eigenvalue problems with eigenvalue nonlinearity

% & ' = 0
• Eigenvalue problems with Tensor structures

• Linear response eigenvalue problem

FASTMath Eigensolver Activities

! =)
*+,

-
. ⊗⋯⊗1* ⊗ 1*2, ⊗ .⋯



FASTMath eigensolvers are used in several DOE 
applications
• SciDAC-4

– Catalysis (Kohn-Sham DFT nonlinear eigenvalue 
problem)

– Topological materials (Tensor eigenvalue problem)
– Nuclei structure (Many-body eigenvalue problem)

• Computational Materials Center (linear response 
eigenvalue problem, spectroscopy)

• Computational Chemistry Center (linear response 
eigenvalue problem, spectroscopy)

• ECP (NWChem)

Eigensolver Application areas
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Eight core technology areas: Numerical Optimization
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For more information contact: Todd Munson (ANL), tmunson@mcs.anl.gov



Develop methods for numerical optimization problems with 
constraints and for sensitivity analysis using adjoint capabilities.

Dynamic Optimization
• Deliver new capabilities 

for problems with PDE 
constraints that include:
• Dynamics and 

controls
• State and design 

constraints
• Discrete variables
• Multiple objectives

• Support a range of 
derivative requirements

Adjoints
• Develop advanced 

adjoint and forward 
sensitivity capabilities to 
provide derivative 
information
• Provide methods for 

computing the action of 
second-order adjoints
• Support calculations 

involving several 
quantities of interest

Sensitivity Analysis
• Develop iterative 

sampling methods that 
employ sensitivity 
analysis and surrogate 
models to determine 
the most important 
parameters
• Explore multilevel 

approach that uses a 
low-fidelity model to 
predict parameter 
sensitivities

For more information:  Todd Munson (tmunson@mcs.anl.gov)

Numerical Optimization Activities



Numerical Optimization Overview

Left: aerodynamic shape optimization
Middle: design of electromagnetic scatterer
Right: ice sheet inversion



Software Development
• APOSMM, MATSuMoTo, ORBIT, 

POUNDERS

– Derivative-free optimization
• MINOTAUR

– Mixed-integer nonlinear optimization
• TAO, ROL

– PDE-constrained optimization

Numerical Optimization Software and Applications

Exploiting structure in particle 
accelerator calibration

Applications
• NP: Nuclear Computational Low Energy 

Initiative (NUCLEI)

– Calibration and optimization of energy 
density functionals

• HEP: Community Project for Accelerator 
Science & Simulation (ComPASS4) 

– Particle accelerator design
• HEP: Accelerating HEP Science: Inference 

and Machine Learning at Extreme Scales

– Multi-fidelity optimization and Bayesian 
parameter estimation

• HEP: Data Analytics on HPC

– Least-squares problems with integer 
variables and sensitivity analysis

• BER: Probabilistic Sea-Level Projections 
from Ice Sheet and Earth System

– Transient PDE-constrained optimization
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Eight core technology areas: Uncertainty Quantification
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For more information contact: Habib Najm (SNL), hnnajm@sandia.gov



• High dimensional function representations
– Polynomial regression, compressive sensing
– Low rank tensors, basis adaptation, manifolds

• Multilevel Multifidelity (MLMF) 
– Monte Carlo, PCE via sparse/low-rank
– Resource allocation across model form and 

discretization level hierarchies
• Bayesian inference

– Data-informed subspace, model error 
• Optimization under uncertainty (OUU)

– Recursive trust region model management with 
deep hierarchies

– Reliability-based OUU based on efficient 
estimation of rare events

Uncertainty Quantification – Ongoing work

⇡
prior

⇡
posterior

Data dominated



Description of the UQ software tools

§ DAKOTA
• Uncertainty quantification and 

Optimization
• Open source (GNU LGPL)
• dakota.sandia.gov

§ UQ Toolkit – UQTk 
• Uncertainty quantification
• Open source (GNU LGPL)
• www.sandia.gov/UQToolkit



UQ Application interactions

§ Ice sheet and earth system modeling
§ Tokamak disruption simulation
§ Exascale wind flow modeling
§ E3SM climate modeling
§ Sensor networks for climate modeling
§ Fusion plasma surface interactions
§ Fission gas in nuclear fuel
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Eight core technology areas: Data Analytics
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For more information contact: Rich Archibald (ORNL), archibaldrk@ornl.gov



Data Analytics 

• Goal: Sparse functional representation of data, to 
enable faster IO and analysis of big datasets 

• Software tools: Tasmanian, PUMI, TAO 
• FASTMath Tasks

Sparse IO of Big Data

• Advanced sampling 
techniques for distributed 
data

• Research adaptive 
methods for sparse 
representation 

• Build accurate uncertainty 
estimates for sparse 
representations of data

Streaming Data Ranking

• Algorithms that maximize 
information transfer

• Ordered sparse functional 
representations of data

• Parallel methods for 
streaming distributed 
datasets

Fast Estimation & 
Evaluation 
• Develop and design high 

order regularizes that 
optimize functional 
representations of data

• Surrogate models that 
accelerate estimation and 
evaluation of sparse data 
approximation

§ For more information:  Rick Archibald (ArchibaldRK@ornl.gov), Clayton Webster (ORNL), & 
Hoang Tran (ORNL)

mailto:ArchibaldRK@ornl.gov)


Ø We reconstruct data ! ∈ ℝ$×& from 
measurements ' ∈ ℝ(×& and ) ∈ ℝ(×$ :

' ≈ )!

Data Analytics: Technical description of technology

	

§ Limited number of measurements: + ≪ -. 
§ The data are sparse.  
§ . = 1: reconstructing a single dataset. 
. > 1: simultaneously reconstructing multiple datasets.  

Ø Recovery via regularizations enforcing sparsity: 

! = argmin 3 4 subject to  ' ≈ )4
Standard CS:   3 4 = 4 5.
Structures of the sparsity can be exploited:
§ Downward closed and tree structures:   3 4 = 4 7,5.
§ Joint sparsity: 3 4 = 4 9,5.



Ø Data from UQ and imaging 
applications often possess 
downward closed and tree 
structure.

Data Analytics: Technical description of technology

Ø Weighted !" minimization with a 
specific choice of weight: 

# $ = $ &," with () = max |.:,)|

Certified reduction in complexity: 
§ Legendre systems:      0 = O s3 instead 

of O s3.56 as in unweighted !".
§ Chebyshev systems: 0 = O s".56

instead of O s3 as in unweighted !". 

m=N
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Figure: A 
comparison of 
weighted !"
minimization 
with different 
choices of 
weights

A. Chkifa, N. Dexter, H. Tran, and C. Webster, Polynomial approximation via 
compressed sensing of high-dimensional functions on lower sets. Math. Comp. 
(2017) https://doi.org/10.1090/mcom/3272
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Eight core technology areas: Synergistic Activites
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New Capabilities
• Optimization under 

uncertainty
• Discrete and multi-objective 

optimization for data analytics
• In situ simulation on 

unstructured meshes 

40

Synergystic activities will results in new capabilities 
or higher efficiencies

Higher Efficiency
• Leverage multiple right 

hand sides from 
optimization and UQ 
ensembles in linear and 
nonlinear solvers

• Adaptivity in the spatial and 
stochastic space in UQ on 
unstructured grids; 

• Dynamic UQ load balancing
• In situ simulation on 

unstructured meshes 



The FASTMath organizational structure follows from the core 
technical areas
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• Contacts:
– Lori Diachin, Director (diachin2@llnl.gov)
– Esmond Ng, Deputy Director (egng@lbl.gov)
– Any of the core components leads

• Web site:
– www.fastmath-scidac.org
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For more information…

mailto:diachin2@llnl.gov)
mailto:egng@lbl.gov)
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